CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facies Characteristics And Control Mechanisms of Quaternary Deposits In The Lake Tuz Basin</td>
<td>Alper GÜRBÜZ and Nizamettin KAZANCI</td>
<td>1</td>
</tr>
<tr>
<td>Neotectonic-Period Characteristics, Seismicity, Geometry And Segmentation of The Tuz Gölü Fault Zone</td>
<td>Akın KÜRÇER and Y. Ergun GÖKTEN</td>
<td>19</td>
</tr>
<tr>
<td>Neogene Stratigraphy And Paleogeographic Evolution of The Karaburun Area, İzmir, Western Turkey</td>
<td>Fikret GÖKTAŞ</td>
<td>69</td>
</tr>
<tr>
<td>Benthic Foraminiferal Fauna of Malatya Oligo-Miocene Basin (Eastern Taurids, Eastern Turkey)</td>
<td>Fatma GEDİK</td>
<td>93</td>
</tr>
<tr>
<td>Protolith Nature And Tectonomagmatic Features of Amphibolites From The Qushchi Area, West Azerbaijan, NW Iran</td>
<td>Mohssen MOAZZEN</td>
<td>139</td>
</tr>
<tr>
<td>Glauberite-Halite Association In Bozkır Formation (Pliocene Çankırı-Çorum Basin, Central Anatolia, Turkey)</td>
<td>İlhan SÖNMEZ</td>
<td>153</td>
</tr>
<tr>
<td>Estimation of Swelling Pressure Using Simple Soil Indices</td>
<td>Kamil KAYABALI and Özgür YALDIZ</td>
<td>177</td>
</tr>
<tr>
<td>Two Examples For Imaging Buried Geological Boundaries: Sinkhole Structure And Seyit Hacı Fault, Karapınar, Konya</td>
<td>Ertan TOKER, Yahya ÇIFTİÇİ, Aytekin AYVA and Akın KÜRÇER</td>
<td>189</td>
</tr>
<tr>
<td>The Assessment of Geothermal Potential of Turkey By Means Of Heat Flow Estimation</td>
<td>Uğur AKIN, Emin Uğur ULUGERGERLİ and Semih KUTLU</td>
<td>201</td>
</tr>
<tr>
<td>A Brief Note On Mineral Evolution And Biochemistry</td>
<td>José Mario AMIGO</td>
<td>211</td>
</tr>
<tr>
<td>Criticism on the paper “Possible Incision of The Large Valleys In Southern Marmara Region, Turkey”</td>
<td>Nizamettin KAZANCI</td>
<td>219</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td></td>
<td>221</td>
</tr>
<tr>
<td>Notes to the authors</td>
<td></td>
<td>223</td>
</tr>
</tbody>
</table>
1. Introduction

The Lake Tuz Basin in Central Anatolia is the largest terrestrial basin in Turkey (Figure 1). The basin with an area of about 15000 km² has been thought to be a deposition site since the upper Cretaceous (Görür and Derman, 1978; Turgut, 1978). Due to the plain morphology, which indicates that basin has a thick basin fill and has not been significantly affected by young tectonic activity, for many years the basin has been the subject of studies on economic resources such as oil and natural gas (Arkan, 1975; Uğurtaş, 1975; Uygun, 1981; Aydemir and Ateş, 2008; Huvaž, 2009). In addition to these studies on Paleogene units, there are also other surveys regarding evaporitic characteristics of younger units and determination of mineral resources of economic value (Irion and Müller, 1968; Erol, 1969; Uygun and Şen, 1978; Çamur and Mutlu, 1996; Derman, 2003; Tekin et al., 2007). In all these studies, the younger-stage evolution of the basin, which has been hitherto neglected, is of great importance as regards to both active tectonism and climate investigations. Within this scope, except for the half-century old pioneering and valuable efforts of Öğuz Erol (1969), limited number of studies and publications are available (Ulu et al., 1994a, b; Kashima, 2002; Kürçer and Göktent, 2012; Özsayın et al., 2013). On the other hand, there are exceptionally detailed studies on the Konya basin (just south of the Lake Tuz Basin) and the ancient Lake Konya (Roberts et al., 1979, 1999; Roberts, 1983; Karabiyikoğlu et al., 1999; Kuzucuoğlu et al., 1999; Leng et al., 1999; Reed et al., 1999). Since the study of Erol (1969), which was carried out beyond the means of today’s conditions, the number of exposures in the region has been increased and the advancements in research techniques necessitated the elaboration of recent stage characteristics of the Lake Tuz Basin.
Lacustrine deposition systems are the best places to study their origin and evolution in conjunction with tectonism and climate factors which directly affect these parameters (Karabiyikoğlu, 2003). These areas, which can be thought as natural archive systems with direct records of paleo/recent climate changes and tectonic controls, still have maintained their importance in the earth science since the pioneering works of Gilbert (1885, 1890). The interrelations between alluvial and lacustrine environments, particularly of Quaternary closed lake basins, record Pleistocene and Holocene tectonic- and climate-induced environmental changes and long-term sedimentologic and geomorphologic lake level oscillations as well (Karabiyikoğlu, 2003). The facies of Quaternary deposits in Lake Tuz Basin and processes that control these facies are the materials of present study.

2. Pre-Quaternary Basement Units

The Lake Tuz Basin in western part of the central Anatolia is a tectonic deposition site filled with late Cretaceous-Quaternary sediments with a measurable thickness of 5000 m (Figure 2). The basement under this thick fill is represented mostly by the Central Anatolian Crystalline Complex and the Kütahya-Bolkardağı Metamorphics (Erler et al., 1991; Göncüoğlu et al., 1991, 1992, 1993, 1996; Akman et al., 1993; Türel et al., 1993; Yalnız et al., 1996, 2000; Yalnız and Göncüoğlu, 1998; Dirik and Erol, 2003; Kadioğlu et al., 2003; Göncüoğlu, 2011).

The basin fill starts with a terrestrial unit consisting of red colored clastics which unconformably set above the basement unit at east and west parts of the study area (Figure 3). It is

![Location map of the Lake Tuz draigane basin.](image-url)
believed that this unit composing of alluvial fan deposits was developed under the control of border faults in the basin which opened in the late Cretaceous (Çemen et al., 1999). Above this red clastic unit is a thick sequence which was deposited in shallow-deep-shallow marine environments (Figure 3; Sirel, 1975; Ünal et al., 1976; Görür and Derman, 1978; Görür, 1981; Dellaloğlu and Aksu, 1984; Görür et al., 1984; Atabey et al., 1987; Oktay and Dellaloğlu, 1987; Özer, 1988; Sonel et al., 1995; Göncüoğlu et al., 1996; Dellaloğlu, 1997; Çemen et al., 1999; Varol et al., 2000; Derman, 2003; Derman et al., 2003; Dirik and Erol, 2003; Ayıyıldız, 2006; Uçar, 2008; Huvaz, 2009; Nairn, 2010). Mio-Pliocene deposits represented by terrestrial clastics and carbonates which unconformably overlie the underlying units are the second most widespread unit in the study area after the Quaternary deposits (Figure 2). Because Quaternary deposits are interfingered with the Mio-Pliocene unit, it is important to describe characteristic features of both units.

The Mio-Pliocene deposits start at the bottom with coarse clastics and light brown, loosely-compacted conglomerate-sandstone alternation. They continue to the middle parts with yellowish mudstone-sandstone alternation and end up with greenish, yellowish gray marl and limestone (Figure 4; Ulu et al., 1994a, b; Uçar, 2008). Cross-bedding and lensoidal geometry are very common in clastic levels. The unit also contains tuff and gypsum levels. It discordantly overlies underlying lithologies and according to ostracoda species collected from limestone levels the age of unit is suggested to be Pliocene by Tunoğlu et al. (1995) and Beker (2002) and based on spore and pollen data a Mio-Pliocene age is given by Dellaloğlu (1997).

3. Quaternary Units

Quaternary studies have become a separate discipline since active tectonic studies have gained more importance as the mankind could predict his future with the ascertaining of paleo-climate data (Kazancı and Gürbüz, 2012). Young units, so called alluvium in previous works, were not subjected to detailed investigation and therefore they have come
into prominence. Recently this approach has been getting more popular giving rise to investigation in the formation scale of units, which are mapped previously as “young deposits”, “recent units” and “alluvium”. Likewise, in previous studies on the Lake Tuz Basin, Quaternary deposits that are mapped as alluvium were first mentioned by Erol (1969) and named by Ulu et al. (1994a, b) as the Tuzgölü formation of Pleistocene-Quaternary age (Figure 4). Although their bottom-top relations may be different, in recent studies this nomenclature has been frequently adopted (Dirik and Erol, 2003; Özsayın, 2007; Özsayın and Dirik, 2007). In the present study sedimentary facies properties described belong to

Figure 3: The generalized stratigraphic sections of eastern and western parts of the Lake Tuz Basin (compiled from Dirik and Erol, 2003)

<table>
<thead>
<tr>
<th>QUATERNARY SYSTEM</th>
<th>SERIES</th>
<th>LITHOLOGY</th>
<th>DESCRIPTION</th>
<th>LITHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alluvium</td>
<td>A.U.</td>
<td>A.U.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbonate, gypsum and sulfate-bearing levels, pebble-sand</td>
<td>A.U.</td>
<td>A.U.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TERTIARY</th>
<th>Eocene</th>
<th>Fossiliferous limestone</th>
<th>Volcanoclastics and lava</th>
<th>Blocky turbidite sandstone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Terrestrial detritics and tuffite</td>
<td>Gypsum-shale alternation</td>
<td>Terrestrial detritics, clayey limestone and coal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terrestrial detritics, tuffite and evaporites</td>
<td>Mass evaporites, terrestrial detritics</td>
<td>A.U.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.U.</td>
<td>A.U.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PALAEOCENE</th>
<th>Oligocene</th>
<th>A.U.</th>
<th>A.U.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plioene</td>
<td>A.U.</td>
<td>A.U.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.U.</td>
<td>A.U.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRETAUCEOUS</th>
<th>Maastrichtian</th>
<th>A.U.</th>
<th>A.U.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A.U.</td>
<td>A.U.</td>
</tr>
</tbody>
</table>
aforementioned adopted unit. This unit is quite important to propound characteristics of old shore lines of Lake Tuz which covered a larger area in the Pleistocene.

In previous works units that are mapped as Plio-Quaternary together with late Pliocene levels have been studied as the Quaternary units considering that the time range of Quaternary era was expanded from 1.8 Ma to 2.6 Ma with an update of International Stratigraphic Guide in 2009 (Mascarelli, 2009; Kazancı, 2009).

Today’s Lake Tuz Basin comprising the study area is the Quaternary equivalent of a large and long-lived deposition system. The Miocene units are ended with firm carbonate unit which facilitates separation of these units from younger ones. Drilling works and measured stratigraphic sections in the same region indicate that Pliocene and Quaternary deposits resemble each other in many aspects and stratigraphic borders cannot be often distinguished (Gürbüz, 2012). It was noticed during the surface investigations that red colored Pliocene sediments which are overlain by the Quaternary deposits are loosely compacted and in some sites easily distinguished with their firm character.

As indicated above, lowermost parts of the unit can be only determined with samples from relatively deep boreholes and seismic sections. DSI well logs indicate that lithology of unexposed parts is almost similar to that of exposed rocks. As revealed from drilling data, Quaternary deposits in the basin attain a maximum thickness of 190 m and dominant lithofacies at depths are represented by lacustrine clays (Gürbüz, 2012). It is concluded that facies observed in the upper and lower parts of Quaternary deposits are quite similar.

4. Sedimentology

In order to determine spatial and temporal environmental properties and sedimentary evolution of Quaternary units in the Lake Tuz Basin, areas operated by the private sector as aggregate quarry and the trenches opened by the General Directorate of Highways for extraction of material to be used for road construction and maintenance were utilized and detailed surveys were conducted in 17 different areas and sections with thickness exceeding 10 m were evaluated. Along these sections, 12 lithofacies and 5 facies unit were described (Table 1; Figure 5). Sequences for which facies analysis are completed are from the uppermost part of Tuzgölü formation. They are mostly old lake shore terraces and their equivalent lacustrine deposits differentiated by Erol (1969) are at between 912-980 m. In facies descriptions, definitions of Miall (1978, 1996) and facies described for the Konya Basin (Karabıyıköprü, 2003) were considered, which has similar geologic history and geographic features with the study area.

4.1. Lithofacies characteristics of Quaternary deposits

F1- Massive, matrix supported pebble facies: It is red or light/dark brown colored, mostly matrix supported and has slight amount of sand and fine pebble
Table 1- Facies and facies associations of Quaternary deposits based on surface data. Some lithofacies and their explanations are from Miall (1996) and Karabıyıkolu (2003).

<table>
<thead>
<tr>
<th>Facies</th>
<th>Explanations</th>
<th>Facies Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive, matrix-supported pebble facies</td>
<td>Debris flow deposits, red, dark brown colored, matrix supported. Angular, sub-angular grains. Maximum grain size is 60 cm.</td>
<td>Alluvial fan</td>
</tr>
<tr>
<td>Massive, red mud facies</td>
<td>Flood plain deposits; red silt and sand lenses, interlayered with matrix supported pebble facies</td>
<td>Basin margin deposits</td>
</tr>
<tr>
<td>Lateral bedded pebble and sand facies</td>
<td>Debris flow deposits, light brown colored poorly sorted moderate to well rounded</td>
<td>Fluvial</td>
</tr>
<tr>
<td>Cross bedded, brown pebble and sand facies</td>
<td>River bar deposits; reddish brown colored, moderate to well sorted, well rounded, matrix supported</td>
<td></td>
</tr>
<tr>
<td>Lateral and parallel bedded fine sand, silt and clay facies</td>
<td>Flood plain deposits; red to brown colored</td>
<td></td>
</tr>
<tr>
<td>Ripple-planar sand facies</td>
<td>Wave-current ripples, symmetrical, well sorted lenseoidal</td>
<td>Fan delta</td>
</tr>
<tr>
<td>Cross bedded, grey pebble and sand facies</td>
<td>Lateral transition deposits; asymmetrical, moderate to well sorted</td>
<td></td>
</tr>
<tr>
<td>Laminated sand and silt facies</td>
<td>Parallel laminated, well rounded, well sorted, grain components are dark heavy minerals and light colored quartz</td>
<td>Beach</td>
</tr>
<tr>
<td>Clayey carbonate facies</td>
<td>White, grizzly colored</td>
<td>Lake flat</td>
</tr>
<tr>
<td>Massive, beige mud facies</td>
<td>Lake floor sediments, beige, grizzly colored</td>
<td></td>
</tr>
<tr>
<td>Evaporites</td>
<td>Gypsums interlayered with clayey carbonate and marls</td>
<td></td>
</tr>
<tr>
<td>Travertines</td>
<td>Cones or patches with diameter up to a few hundred m</td>
<td></td>
</tr>
</tbody>
</table>

Bounding (Figure 6). Pebbles in the facies are scattered within mud cement. Angular-subangular pebbles are varied depending on the lithology of source rock. Grains are of mostly coarse size and blocks of 60 cm are also found. Massive character and chaotic structure of the unit indicate deposition of debris flow as a result of mass movements.

F2- Massive red mud facies: This facies is composed of red, light/dark brown colored massive mud deposits and silt-clay levels and lenses with lesser amount of pebble (Figure 6). As reflected by textural and color tone differences, bedding is peculiar. Clastic material packing within the facies is indicative of wind-blown process whilst mud deposits indicate that suspended materials are deposited in stagnant water conditions and therefore the unit can be described as flood plain sediment which is observed to alternate with the matrix supported pebble facies.

F3- Lateral bedded pebble and sand facies: This facies is represented by light brown colored, poorly sorted and moderate to well rounded, lateral or low-angle parallel layered mud and grain-supported pebble and sand deposits (Figure 6). Deposits that are found as lenses or mantling within or on the debris flow type sediments with grain size up to block range reveal that they occur not only as debris flows but also over-saturated flood flows as a result of intense rainfall and subsequent ceasing (Karabıyıkolu, 2003).

F4- Cross bedded, brown pebble and sand facies: This facies is composed of reddish brown, moderate to well sorted, well rounded, grain-supported pebble and sand deposits (Figure 6). Internally graded cross beddings show that bed load is transported in lateral direction (Rust, 1978). The facies which is deposited on an erosional surface has a limited lateral extent. The unit consisting of river bar deposits changes laterally and vertically to flood plain deposits.

F5- Lateral and parallel bedded fine sand, silt and clay facies: The unit consists of lateral- and parallel-bedded, red and brown fine detrital materials and shows tens of meter lateral extent. It is generally observed below and/or above the lateral- and cross-bedded pebbles (Figure 6). Contacts between the layers are sharp and transitional. In this fine-material facies plant root relicts and desiccation cracks are noticeable. The unit as a whole is a flood plain deposit but fine sand and silt levels within it are crevasse deposits.

F6- Ripple-planar sand facies: This facies is composed of well sorted, tabular-shaped pebble, sand and silt deposits displaying lateral extent and lensoidal geometry with a limited distribution (Figure 6). The unit is in symmetrical form and represented by sigmoidal and wedge-shaped geometry and comprises wave flow and wave deposits of a few to 10-15 cm thickness.

F7- Cross bedded, gray pebble and sand facies: The unit with an asymmetric form and combined sets is
composed of medium-poorly sorted, medium-well rounded, cross bedded, grain supported pebble and sand deposits (Figure 6). Grain components are varied with respect to spatial distribution of deposits and are mostly of limestone and volcanic rock origin. Erosional forms on the lower surfaces are in planar or trough geometry. Fine mud laminations noticed between the sets are indicative of stagnant water conditions. This facies is generally associated with ripple-planar sand facies. The unit is simply a lateral transition deposit.

F8- Laminated sand and silt facies: This facies is composed of parallel-laminated, well rounded and well sorted slightly pebble and dominantly sand and silt deposits (Figure 6). It has a thickness of 3-8 cm and grains are composed of dark colored heavy minerals and light colored quartz. Deposits that correspond to lower sections of F6 and F7 facies show lateral continuity as long as overlying units are not significantly eroded.

F9- Clayey carbonate facies: The unit which consists of white, grizzly and pinkish colored clayey carbonate and marl deposits is interlayered with F10 and F11 facies or occurs as a thick massive level below and above these facies (Figure 6). Depending on deepening and shallowness of the environment color tone of unit changes occasionally and the pebble-size material of debris flow is also noticeable.

Figure 5- Measured sections and location map of Quaternary deposits on which detailed sequence observations are available.
Figure 6- Typical exposures for lithofacies characteristics of Quaternary deposits in the study area. Compare with descriptions given in table 1.

F10- Massive, beige mud facies: The unit is generally in beige, light brown colors but shows dark gray/blackish levels depending on organic material input (Figure 6). Like F9 facies, it rarely contains pebbly flood sediments. In deposits dominated by organic matter herbaceous plant relicts are observed.

F11- Evaporite facies: The unit which is alternated with clayey carbonate and marls is represented by beige, yellow gypsiums. It is found as 3-20 cm thickened layers and longitudinal and transverse massive masses within Quaternary units at western part of the basin (Figure 6).
F12- Travertine facies: This facies is determined on old lake flats rather than measured stratigraphic sections (Figure 6). Therefore, stratigraphically it is the youngest unit and can be considered as an independent occurrence with respect to other basin deposits. In areas particularly close to western border of the basin the facies has a conical morphology and is represented by a number of about 60 white travertine cones with diameter ranging from a few to a few hundred m (Figure 7a; Erol, 1967, 1968). At this area aforementioned lithofacies contains abundant plant relicts and relevant pore texture (Figure 7b) and therefore can be named tufa, as will be explained under facies association in the forthcoming section, we name the unit “travertine” since it is more common than the term “tufa” as also described by Erol (1967, 1968). Travertine deposits are also found around thermal water springs in the Aksaray region.

4.2. Depositional environments of Quaternary deposits

As mentioned in previous sections, Quaternary deposits were formed during the closure of the basin. Facies and their spatial distributions indicate that the present sequence with a larger water mass surrounding the recent Lake Tuz covers shore and backshore facies. In this section, facies associations corresponding to depositional environments of each studied facies are introduced. The facies associations are grouped based on their genetic relations (Miall, 1978; Rust, 1978).

FB1- Alluvial fan deposits: This association is composed chiefly of red, light/dark brown, massive, matrix supported pebble facies (F1) and massive red mud facies (F2) (Table 1). In addition, lateral or low-angle layered pebble and sand facies (F3) is also slightly observed. This association that is mainly represented by debris flow and flood plain deposits is particularly traced along the eastern border of the basin. At this area, alluvial fan deposits occur in a narrow belt between the recent shore line of Lake Tuz and the Tuzgölü fault, in front of fault scarps at west part of basin, in areas excavated for material extraction and along the valleys opening to the Lake Tuz. Following the lake deposits, alluvial fan deposits represent the second widespread facies association in the basin. During the field studies, 10-m thickened sequences of these units were examined and it was noticed that alluvial fan facies has lateral and/or low-angle planar surfaces. Particularly most of late Quaternary fans preserve their ideal geometries. The early Quaternary fans overlie by these fans are laterally coalescence.

FB2- Fluvial deposits: The fluvial deposits are found at margins and within the basin and are composed of red and light/dark lateral layered pebble and sand facies (F3), cross bedded, brown pebble and sand facies (F4) and lateral and parallel bedded fine sand, silt and clay facies (F5) (Table 1). Regarding the features of facies association, the deposits are composed of debris flow mostly reflecting braided and meandering river systems, flood flow, river bar, flood plain and crevasse deposits. Deposits which are laterally and vertically transitional to alluvial fan association at margins are very common particularly at east and southeast parts of the basin. At southeast part of the basin, they are in lateral transitional to fan delta deposits (FB3) and in vertical transitional to lake flat deposits (FB5).

Figure 7- (a) Travertine cones around the Lake Bolluk; (b) Close view of structures with abundant plant relicts.
FB3- Fan delta deposits: This facies association is composed of gray, grizzle and beige ripple-planar sand (F6) and cross bedded, gray pebble and sand (F7) facies. This association is crucially important to reflect the deep character of paleo Lake Tuz (Table 1). Field observations indicated that they are exposed in wide areas just above and in front of the Obruk Plateau in southern part of the basin. The facies is occasionally laterally transitional to fluvioglacial deposits and mostly in vertical transitional to lacustrine muds. This association shows a sequence character with grain size getting coarser to the top and then getting finer. These deposits are well observed along shorelines and correspond to 955 and 930 m of Erol (1969). They are generally composed of volcanic rock fragments and deposits transported by rivers are derived from volcanites at south and southeastern parts of the area. The sequence at the upper level is coarse grained whilst deposits in the lower part (~930 m) are made up of relatively finer grains. Sequences investigated within their own borders display 1.5-2 m thickness indicating relatively deep and high-energy water environment.

FB4- Beach deposits: These deposits that are composed of laminated sand and silt facies (F8) just below the delta sediments represented by the least areal and volumetric distributions (Table 1). However, they are critically important to reveal a larger beach environment which might have an old paleogeographic meaning since sandbank develops in only wave-dominant shores. This means that water depth is relatively higher. From this point of view, it can be said that water level in the old Lake Tuz might occasionally attain depths sufficient enough to generate large waves.

FB5- Mud flat deposits: This association with the widest distribution in the basin is composed of clayey carbonate (F9), massive, beige mud (F10), evaporite (F11) and travertine (F12) facies (Table 1). Lake deposits which have the least thickness but wider exposure area are found to be quite thickened in boreholes opened in the basin (Gürbüz, 2012). The unit was mostly deposited in shallow and calm lacustrine conditions, however considering bluish/greenish colored lower levels, it might also indicate a setting where deep lacustrine environment changes to fluctuating or relatively shallow conditions. Evaporites in western part of basin may be evident for this shoaling process. As stated by Ford and Pedley (1996), travertines at west of basin are mostly laterally and vertically in transition with lacustrine facies indicating that alkaline spring waters flow into a lacustrine area and intense algae production in shallow conditions are accompanied by aquatic plants (Akçü et al., 2004). In systems where lake margins are directly leaned on basement rocks such carbonate formations might be indicative of concurrent tectonism and groundwater recharge to the lake. Erol (1967-68, 1969) described these occurrences along the shore as travertine cones (Atabey, 2003). These formations with detailed lithofacies descriptions can be termed as tufa because they have abundant plant relicts and pore structures. In lacustrine environments tufas develop at depths less than 1 m (Atabey, 2003). If the lake water is salty they can be generated by bacteria and blue-green algae accumulations around the freshwater manifestations (Pedley, 1990; Atabey, 2003). Pentecost (1993), Pentecost and Viles (1994) and Ford and Pedley (1996) combined all tufa descriptions under the travertine term and classified travertines with respect to temperature condition (Atabey, 2003). In the literature, America, Europe and all Spanish-speaking countries (21 countries), tufa description is considered within the context of travertine and not used as a different term (Atabey, 2003).

5. Discussion: Control Mechanisms

Sequence examinations in the field indicate that Lake Tuz, which is recently receded to the northeast of the basin, covered large areas in the Pleistocene towards the south and west (Figures 5, 8). Fan delta sequences and very thick, widespread lake basement deposits imply that depth of paleo Lake Tuz was much more than that of present-day. Taking into account the surface area and water depth of this high-energy lake, the Lake Tuz is classified as large lake (500-5000 km²) and very shallow lake (1.5 m) by Kazancı (2012), however in Pleistocene it was a very large lake (~7500 km²) with respect to area and shallow or moderate-depth lake (20-100 m) with respect to depth. Similar approaches for the Lake Tuz were first put forward by Salomon-Calvi and Kleinsorge (1939) and their study was improved nearly half-century ago by Oğuz Erol who first used the geomorphologic data. In addition, based on his studies in southeast part of the basin, Kashima (2002) suggested that in late Pleistocene (about 20 ka before present) the Lake Tuz floor was 15 m higher than today. In the Konya basin which is the equivalent of Lake Tuz basin, a lacustrine environment covering an area of about 4500 km² with depth of 25-30 m was reported in late Pleistocene (see Karabıyıkolu and Kuzucuoğlu, 1998). Since these two large Pleistocene lakes are within the same recharge area and are interconnected regarding...
groundwater dynamics, conjugate results from these lakes are not too much surprised.

The closed basin lakes are very sensitive to changes at the bottom of basin. In general, tectonism controls the surface area of basin and, in case of contemporaneous with the deposition, it defines the characteristics of deposition systems. The climate is primarily responsible for the amount of water that enters to the basin via precipitation and drainage and removed from the basin through evaporation. Other factors such as the effect of climate on vegetation and the amount of sediment transported also play important role in this process (Ilgar, 2004).

Figure 8- (a) On 1:100,000 scaled map distributions of variations and stages of shore line of Lake Tuz (Erol, 1969) in the Quaternary (left) and reconstructed shore lines of Erol (1969) on 1:25,000 scaled map (right); (b) spatial distribution of Quaternary shore lines of Erol (1969) reconstructed with respect to recent topography and their relation with surrounding areas based on this topography.
As stated by Erol (1969; Figure 8), in the Lake Tuz basin there is a lacustrine sediment distribution which gradually covered and/or leaved both Lake Tuz sub-basin and other sub-basins such as Kulu, Yeniceoba, Altınekin and Tersakan (Figures 8, 9 and 10). Spatial distribution of these deposits can only be controlled by tectonic events. Although, like in other regions in Turkey, an apparent steepness showing the effect of tectonic disturbance is not noticed in morphology, these sub-basins, in regional scale, are ultimately separated from each other by structural factors and thus, most are active even though the region is seismologically inactive (Figures 9, 10). The main ones of these structures are Eskişehir fault zone (Şaroğlu et al., 1987; Altunel and Barka, 1998; Ocakoğlu, 2007), Yeniceoba, Cihanbeyli and Altınekin fault zones (Çemen et al., 1999; Dirik and Erol, 2003; Özsayın, 2007; Özsayın and Dirik, 2007, 2011; Akıl, 2008; Gürbüz, 2012; Özsayın et al., 2013), Tersakan-Sultanhanı fault zone (Gürbüz, 2012) and Tuzgölü fault zone (Beekman, 1966; Şaroğlu et al., 1987; Leventoğlu, 1994; Çemen et al., 1999; Koçyiğit, 2003; Toprak, 2003; Kürçer and Göktèn, 2012). Alluvial fan deposits, which are well developed particularly at east of the basin, are deposited under the control of NW-SE extending Tuzgölü fault. The results of dating studies of Kashima (2002) and Kürçer and Göktèn (2012) indicate that fan deposits are formed at the beginning of Holocene. This implies that the high lake level in late Pleistocene was lowered because of climate-induced effects. In addition, the Quaternary volcanism at south of basin is another agent controlling the amount and diversity of material transported to the basin. This is supported by the
volcanic origin of components in clastics comprising the beach deposits and Pleistocene fan delta which is exposed along the southern part.

Special structures of conical-shaped travertine deposits at west have a unique meaning to the basin regarding tectonic and climate events. In the area where cones widely occur, their linear-like appearance, as stated previously by Erol (1967-68), is indicative of a structural control. This is also supported by the presence of an active fault along this line, which is named Zıvarık fault by Erol (1969), Konya fault zone by Eren (2003), Konya-Bulok fault zone by Koçyiğit (2003) and Altunekin fault in several studies (Çemen et al., 1999; Dirik and Erol, 2003; Özsayın and Dirik, 2007, 2011; Gürbüz, 2012). On the other hand, climate was also shown to be a powerful agent in development of travertine deposits. Although these cones seem to be developed along a structurally-controlled line in that part of basin, individual structures with their conical geometry may indicate that each cone is associated with water manifestation. As mentioned in the previous section, development of these deposits is related with freshwater flux. Moreover, individual structure of travertines requires different geochemical conditions for the fluids by means of chemistry and temperature (Pedley, 1990). Cold freshwaters that precipitate such cones might have been released into a saline and relatively hot lacustrine environment. This indicates that chemistry and temperature of Bolu lake water during the deposition of travertines are very similar to those of present time.

On the other hand, it should be taken into account that during the Pleistocene lake basin was connected to the Konya basin to the south and therefore it must have had a wider recharge area. This, in turn, means that Lake Tuz is recharged from a wide area through the Taurus Mountains at south. Moreover, the river network must have been established by strong-flow streams rather than today’s ephemeral low-current streams. This is strongly supported by the presence of fan delta sediments on old shorelines extending along the southern part of the basin. It is thought that the “Konya Plain Main Discharge Canal” is connected to Lake Tuz via a natural channel between the two basins and as a result, the region, in a large scale, has been regarded as the “Konya Closed Basin” (Figure 11). Although groundwater is interconnected under these basins, there has been no surface water connection with the exception of discharge canal. In the frame of Konya Wastewater Treatment Facility project which was taken into operation in 2009, discharge canal was disconnected. Therefore, Lake Tuz closed basin and Konya closed basin should be investigated separately. As mentioned previously, in Pleistocene these basins were connected to each other, however, by Holocene the basins were disconnected as a result of different climatic and tectonic controls.

Considering the width and relatively deeper water level of lake that occupied the basin during the Pleistocene, water-evaporation balance that could recharge this lake must have been much greater than current difference (50 x10³ m³/y) which is in favor of recharge waters. It is revealed from the morphology of the Lake Tuz drainage basin is that, for such a region, where river network is not beyond the borders of Lake Tuz and Konya basins, the expected direct recharge from the rainfall and groundwater is more than the current value. Since the basin under investigation is a closed one, evaporation process will be very limited and takes place under wet/rainy conditions. These conditions are also suggested for the Konya basin which is the equivalent of Lake Tuz basin (Karabıyıkolu, 2003). Although there are findings implying intermittent short-term wet and cold climate conditions in last period of Pleistocene, pollen analysis yielded strong data to suggest this period was arid and cold (van Zeist and Bottema, 1982, 1991; Bottema, 1987). This contradiction is explained by Roberts (1983) as the facilitation of low evaporation by cold and cloudy climate conditions (Karabıyıkolu, 2003).

On the other hand, it should be taken into account that during the Pleistocene lake basin was connected to the Konya basin to the south and therefore it must have had a wider recharge area. This, in turn, means that Lake Tuz is recharged from a wide area through the Taurus Mountains at south. Moreover, the river network must have been established by strong-flow streams rather than today’s ephemeral low-current streams. This is strongly supported by the presence of fan delta sediments on old shorelines extending along the southern part of the basin. It is thought that the “Konya Plain Main Discharge Canal” is connected to Lake Tuz via a natural channel between the two basins and as a result, the region, in a large scale, has been regarded as the “Konya Closed Basin” (Figure 11). Although groundwater is interconnected under these basins, there has been no surface water connection with the exception of discharge canal. In the frame of Konya Wastewater Treatment Facility project which was taken into operation in 2009, discharge canal was disconnected. Therefore, Lake Tuz closed basin and Konya closed basin should be investigated separately. As mentioned previously, in Pleistocene these basins were connected to each other, however, by Holocene the basins were disconnected as a result of different climatic and tectonic controls.
Lake level fluctuations presented by Erol (1969) spatially coincide with our results. Therefore, it is possible to say that studies of Erol (1969) are far beyond the expectations of that period and the boundaries he suggested for lake shore oscillations are confirmed by our observation of proposed deposits. However, such consistency by means of morphosedimentary could not be noticed temporally because all fluctuations have been previously linked to fluvial stages.

6. Results

In this study detailed sequence examinations were carried out particularly in south and east parts of the Lake Tuz basin and as a result the Quaternary deposits were differentiated under 12 lithofacies and 5 facies units. As shown from the these facies distributions, the Lake Tuz, which corresponds to large and very shallow lake category, in Pleistocene covered an area nearly 5 times larger than its present area which classifies the Lake Tuz into a very large, shallow/moderate depth lake. Considering spatial characteristics of lithofacies, material was transported to the lake chiefly from east and southeastern parts where morphology is controlled by tectonism and volcanism. Tectonism played an important role in recession of lake area gradually into recent position. Sub-basins which are the relics of Lake Tuz such as Bolluk, Tersakan, Eşmekaya lakes and several waterlands have been situated as separate benches within depressions formed by several faults. In the basin lake flat deposits are the most widespread deposits which are followed by alluvial fan sediments. During the Pleistocene which was prevailed by tectonism and climate dynamics, the amount of water recharging the basin is believed to be greater than recent time, however, a slight change in water level due to low relief of basin floor resulted in the expansion of lake. Therefore, in the basin there is no well-developed fluvial system reaching to the lake. Climate-induced lake level drop at the beginning of Holocene gave rise to deposition of thick alluvial fan sequences at eastern part of basin which is controlled by the Tuzgölü fault.

Acknowledgements

This study was supported by the Ankara University under grand no. 09B4343017. The study covers a part of Alper Gürbüz’s Ph.D. thesis which was completed at the Ankara University by the supervision of Dr. Nizamettin Kazancı. Uğur Erdem Dokuz (AU), Sonay Boyraz Aslan and Esra Gürbüz (ASU) helped during the field studies, Zeynep Ataselim, Mustafa Eruzun, Ezgi Güllü (AU), Koray Koç (AKDU) and Tuğba Sezen (FSU) helped in the laboratory works and Sinan Akınsa, Özgür Yedek (AU) and Azad Sağlam Selçuk (YYU) are greatly acknowledged for their help in the office works. We are grateful for helpful comments and constructive reviews by Drs. Baki Varol, Gürsel Seyitoğlu, Yusuf Kağan Kadioğlu, Abdullah Ateş (AU), İsmail Ömer Yılmaz (METU), Ömer Feyzi Güer (KOU), Fuat Şaroğlu (JEMIRKO), Attila Çiner (ITU) and an anonymous reviewer.

Received: 20.11.2013
Accepted: 21.04.2014
Published: December 2014

References

Ayyıldız, T. 2006. Hydrocarbon potential of Karapınar-yağlışi formation (Paleocene to Eocene) source

Gilbert, K.G. 1885. The topographic features of lake shore. USGS 5th annual report, 69-123.

Gilbert, K.G. 1890. Lake Bonneville, USGS Monograph 1, 438 p.

Quaternary Deposits of the Lake Tuz Basin

van Zeist, W., Bottema, S. 1991. Late Quaternary vegetation of the Near East, Behriefte zum Tubinger Atlas der Vorderen Orients. Rehie A18, 156 s.

